/** * @class ElementTemplate * @brief The ElementTemplate class illustrates the basic formulation a typical * Element class used in FEM analysis. * * @author tlc * @date 05/01/2020 * @version 0.1.3 * @file ElementTemplate.h * @addtogroup Element * @{ */#ifndef ELEMENTTEMPLATE_H#define ELEMENTTEMPLATE_H#include"MaterialElement.h"classElementTemplatefinal:publicMaterialElement2D{// As a universal practice, we define two static constants to// represent the number of nodes and the number of DoFs.// This is not necessary but only for clearness.staticconstexprunsignedm_node=3,m_dof=2;doublethickness=0.;/**< thickness */doublearea=0.;/**< area */matstrain_mat;unique_ptr<Material>m_material;/**< store material model */public:ElementTemplate(unsigned,uvec&&,unsigned,double=1.);voidinitialize(constshared_ptr<DomainBase>&)override;intupdate_status()override;intcommit_status()override;intclear_status()override;intreset_status()override;};#endif
#include"ElementTemplate.h"#include<Domain/DomainBase.h>#include<Domain/Node.h>#include<Material/Material2D/Material2D.h>/** * @brief * Here we target our ElementTemplate class to fulfil the functionality of a * constant stress triangular element, viz., CPS3, in ABAQUS notation. * * The example element is derived from the `MaterialElement2D` class, hence it * is a 2D element using material models (instead of sections). * * The constructor of `MaterialElement2D` class asks for six parameters: * - Unique Element Object Tag (T) * - Number of Nodes (NN) * - Number of DoFs (ND) * - Node Encoding Tags (NT) * - Material Tag (MT) * - Nonlinear Switch (F) * * In our example, CT and F will be constants, NN is 3 and ND is 2. So we have * three parameters plus thickness for our derived element. Except for * initializing private member variables, we do not have to do anything. All * other initializations will be handled by the Element and Domain class. As * simple as this. */ElementTemplate::ElementTemplate(constunsignedT,uvec&&NT,constunsignedMT,constdoubleTH):MaterialElement2D(T,m_node,m_dof,std::forward<uvec>(NT),uvec{MT},false),thickness(TH){}/** * @brief * As explained before, this method get all necessary information, which * includes getting copies of Material objects and other operations, from the * Domain object. * * Please note that **we do not have to check the existence of any objects** * which are used in the element. The validity of the connected node objects and * the material models is checked in the base initialisation before calling * this method. The execution of this `initialize()` method automatically * implies that this is a valid Element object with valid material model. * * The displacement mode is * \f{gather}{\phi=\begin{bmatrix}1&x&y\end{bmatrix}.\f} * * The strain matrix is calculated as * \f{gather}{B=\partial{}N=\partial{}\left(\phi{}C^{-1}\right),\f} * where * \f{gather}{C=\begin{bmatrix}1&x_i&y_i\\1&x_j&y_j\\1&x_k&y_k\end{bmatrix}.\f} * * One can also initialize stiffness matrix and/or other build-in matrices from * Element class (check the definition for details) in the `initialize()` method. * However, this it not necessary, as the Solver will always call * update_status() method with a zero trial displacement to update current * stiffness and resistance before running iterations. */voidElementTemplate::initialize(constshared_ptr<DomainBase>&D){//! As CPS3 is a constant stress/strain element, one integration point at the//! center of the element is enough. Hence we only have one material model//! defined. First we get a reference of the Material object from the Domain//! and then call the `get_copy()` method to get a local copy. Direct//! assignment is allowed, the move semantics will automatically be invoked.//! There is no need to check if the material model is a 2D one. The validation//! is done in base Element class initialisation.m_material=D->get<Material>(material_tag(0))->get_copy();//! The node pointers are handled in the base Element class, we do not have to//! set it manually. Now we could fill in the `ele_coor` matrix. The//! area/natural coordinate is another version of implementation. Please refer//! to FEM textbooks for theories. This will be used for the computation of//! the shape function.matele_coor(m_node,m_node,fill::ones);for(unsignedi=0;i<m_node;++i){auto&tmp_coor=node_ptr[i].lock()->get_coordinate();for(unsignedj=0;j<m_dof;++j)ele_coor(i,j+1llu)=tmp_coor(j);}//! The area is half of the determinant of the above matrix.//! The area of 2D polygons can also be computed by the `shoelace` function.area=.5*det(ele_coor);constmatinv_coor=inv(ele_coor);//! A standard way to construct the strain mat is to derive from the partial//! derivative of the shape function N. For CP3, as it is a constant//! stress/strain element, the derivatives are constants which can be directly//! obtained from above matrix.strain_mat.zeros(3,m_node*m_dof);for(unsignedi=0,j=0,k=1;i<3;++i,j+=m_dof,k+=m_dof){strain_mat(2,k)=strain_mat(0,j)=inv_coor(1,i);strain_mat(2,j)=strain_mat(1,k)=inv_coor(2,i);}trial_stiffness=current_stiffness=initial_stiffness=strain_mat.t()*m_material->get_initial_stiffness()*strain_mat*area*thickness;if(constautot_density=area*thickness*m_material->get_parameter();t_density>0.){initial_mass.zeros(m_size,m_size);constrowvecn=mean(ele_coor)*inv_coor;constmatt_mass=n.t()*n*t_density*area*thickness;initial_mass(uvec{1,3,5},uvec{1,3,5})=t_mass;initial_mass(uvec{0,2,4},uvec{0,2,4})=t_mass;}//! We use function `ConstantMass()` to indicate the mass matrix will not change//! so that `trial_mass`, `current_mass` and `initial_mass` matrices can point to//! the same memory location. This avoids unnecessary allocation of memory.//! It is not compulsory to call `ConstantMass()`, `ConstantStiffness()` and//! `ConstantDamping()` but highly recommended to do so when one or some matrices//! indeed remain unchanged for the whole analysis.ConstantMass(this);}/** * @brief Now we handle the status update method. We get trial displacement via * build-in method and pass trial strain to the material model. Then get updated * stiffness and stress back to form element stiffness and resistance. * * For a static analysis, **stiffness** and **resistance** have to be * formulated. Apart from this, there is nothing you have to do. They will be * send to global assembler by methods in base Element class, which can also be * overridden to be customized. */intElementTemplate::update_status(){m_material->update_trial_status(strain_mat*get_trial_displacement());trial_stiffness=area*thickness*strain_mat.t()*m_material->get_trial_stiffness()*strain_mat;trial_resistance=area*thickness*strain_mat.t()*m_material->get_trial_stress();return0;}/** * \brief Simply call corresponding methods in material objects. If the element * itself has history variables, they should also be updated/modified in * following methods. */intElementTemplate::commit_status(){returnm_material->commit_status();}intElementTemplate::clear_status(){returnm_material->clear_status();}intElementTemplate::reset_status(){returnm_material->reset_status();}