
1. Basics

The two-scalar formulation depends on hydrostatic stress p and von Mises equivalent stress q.
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2. Yield Function

The yield function is defined as
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where pt > 0 is the tensile yield strength, b = 1 if pe > 0 and b = β if pe < 0 with pe = p − pt + a
denotes relative stress to the origin of ellipse, β is a constant that controls the shape of negative-wards half
of yielding ellipse, M is the ratio between two radii of yielding ellipse.

3. Flow Rule

The associative plasticity is assumed so that
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via the following relationship
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Accordingly,
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where ∆ε
p
v = tr∆εp is the volumetric strain scalar and ∆ε

p
d is the deviatoric strain tensor.

4. Hardening Rule

The hardening variable α is defined as the volumetric strain ε
p
v so that
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The corresponding incremental form is then
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The hardening rule is then defined as a function of α,

a = a (α) > 0. (8)



5. Residual

By using the elastic relationship,
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Hence,
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The governing residual equations for independent variables x =
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]T can be expressed as
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where pe = ptr − Kα + Kαn − pt + a and q =
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6. Local Iteration

The Jacobian can be formed accordingly.
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7. Tangent Stiffness

At local iteration, εtr is fixed and R is iterated out. Noting that in the global iteration, εtr is also a variable
that changes. If local iteration is converged, then R = 0, so
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Taking derivatives about εtr gives
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The stress can be expressed as
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Direct differentiation gives
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