1. Basics

The two-scalar formulation depends on hydrostatic stress p and von Mises equivalent stress 4.
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2. Yield Function

The yield function is defined as
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where p; > 0 is the tensile yield strength, b = 1if po > Oand b = Bif po < O withp, = p—p:+a
denotes relative stress to the origin of ellipse, j is a constant that controls the shape of negative-wards half
of yielding ellipse, M is the ratio between two radii of yielding ellipse.

3. Flow Rule

The associative plasticity is assumed so that
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via the following relationship
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Accordingly,
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where Ael, = trAe? is the volumetric strain scalar and AsZ is the deviatoric strain tensor.
4. Hardening Rule

The hardening variable « is defined as the volumetric strain € so that
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The corresponding incremental form is then
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The hardening rule is then defined as a function of «,
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5. Residual

By using the elastic relationship,
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Hence,
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The governing residual equations for independent variables x = [Ay ] T can be expressed as
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where p, = p"" — Ka + Koy — pr +aand g = mqtr.
6. Local Iteration
The Jacobian can be formed accordingly.
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7. Tangent Stiffness

Atlocal iteration, € is fixed and R is iterated out. Noting that in the global iteration, ¢/" is also a variable
that changes. If local iteration is converged, then R = 0, so
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Taking derivatives about /" gives
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The stress can be expressed as

c=s+pl=
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Direct differentiation gives
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