BilinearDP
Bilinear Drucker-Prager Model
Syntax
Text Only |
---|
| material BilinearDP (1) (2) (3) (4) (5) (6) (7) (8) [9]
# (1) int, unique material tag
# (2) double, elastic modulus
# (3) double, poissons ratio
# (4) double, \eta_y
# (5) double, \eta_f
# (6) double, \xi
# (7) double, initial cohesion, c_0
# (8) double, hardening ratio/modulus, H
# [9] double, density, default: 0.0
|
Theory
See more details on the formulation in the parent page.
Hardening Function
The cohesion develops linearly with the accumulated plastic strain,
\[
c=c_0+H\bar{\varepsilon_p},
\]
in which \(c_0\) is the initial cohesion (similar to the initial yield stress), \(H\) is the hardening modulus, and \(\bar{\varepsilon_p}\) is the accumulated plastic strain.
More
If one sets \(\eta_y=\eta_f=0\), the model effectively becomes the von Mises model with the associative plasticity.
In a uniaxial loading case, the yield function is then
\[
F(\sigma,c)=\sigma-\sqrt{3}\xi{}c.
\]
This leads to a yield stress \(\sigma_y=\sqrt{3}\xi{}c_0\).
The plastic hardening modulus is \(3\xi^2H\).
In terms of total strain and stress, the hardening ratio is \(3\xi^2H/(E+3\xi^2H)\).
For the following model, one can compute the hardening ratio to be
\[
\dfrac{3\xi^2H}{E+3\xi^2H}=0.06204607451.
\]
One can validate this value by plotting the response.
Text Only |
---|
| node 1 5 -5 -5
node 2 5 5 -5
node 3 -5 5 -5
node 4 -5 -5 -5
node 5 5 -5 5
node 6 5 5 5
node 7 -5 5 5
node 8 -5 -5 5
material BilinearDP 1 1E4 .3 0 0 .58461851886189 5 645.1584849161
element C3D8 1 1 2 3 4 5 6 7 8 1
fix 1 1 1 2 5 6
fix 2 2 1 4 5 8
fix 3 3 1 2 3 4
displacement 1 0 -.2 3 5 6 7 8
hdf5recorder 1 Element E 1
hdf5recorder 2 Element S 1
step static 1
set fixed_step_size 1
set ini_step_size 1E-2
set symm_mat 0
analyze
save recorder 1 2
exit
|