ElementalNonviscous
Nonviscous Elemental Damping
References
- 10.1016/j.ymssp.2024.111156
The kernel function is defined as a summation of exponential functions.
\[
g(t)=\sum_{i=1}^n m_i\exp(-s_it)
\]
The parameters \(m_i\) and \(s_i\) are complex numbers.
Syntax
Text Only |
---|
| modifier ElementalNonviscous (1) (2) ((3) (4) (5) (6)...)
# (1) int, unique modifier tag
# (2) int, element tag
# (3) double, real part of `m_i`
# (4) double, imaginary part of `m_i`
# (5) double, real part of `s_i`
# (6) double, imaginary part of `s_i`
modifier ElementalNonviscousGroup (1) (2) ((3) (4) (5) (6)...)
# (1) int, unique modifier tag
# (2) int, element group tag
# (3) double, real part of `m_i`
# (4) double, imaginary part of `m_i`
# (5) double, real part of `s_i`
# (6) double, imaginary part of `s_i`
|
Example
Text Only |
---|
| modifier ElementalNonviscous 1 1 8. 0 2. 0 4. 0 1. 0
|
This defines a kernel function of the following form.
\[
g(t)=8\exp(-2t)+4\exp(-t)
\]