Skip to content

BWBN

Bouc-Wen-Baber-Noori Model

The BWBN model is an extension of the BoucWen model with stiffness degradation, strength degradation and pinching effect.

Syntax

Text Only
material BWBN (1) [2...18]
# (1) int, unique material tag
# [2] double, elastic modulus, default: 2E5
# [3] double, yield stress, default: 4E2
# [4] double, hardening ratio, default: 1E-2
# [5] double, \beta (>0), default: 0.5
# [6] double, exponent n (>0, normally >=1), default: 1.0
# [7] double, initial \nu (>0), default: 1.0
# [8] double, slope of \nu (>0), default: 0.0
# [9] double, initial \eta (>0), default: 1.0
# [10] double, slope of \eta (>0), default: 0.0
# [11] double, initial \phi (>0), default: 1.0
# [12] double, slope of \phi (>0), default: 0.0
# [13] double, \zeta (1>\zeta>0), default: 0.0
# [14] double, slope of A (>0), default: 0.0
# [15] double, p (>0), default: 0.0
# [16] double, q (>0), default: 0.0
# [17] double, \lambda (>0), default: 1.0
# [18] double, density, default: 0.0

History Variable Layout

location value
initial_history(0) z

Theory

The Wikipedia page contains sufficient information about the formulation of BWBN model. Some normalizations are carried out compared to the original model.

The evolution of internal displacement \(z(t)\) is governed by the differential equation,

\[ \eta\Delta{}z=h\dfrac{\Delta{}u}{u_y}\left(A-\nu\left(\gamma+\text{sign}\left(z\cdot\Delta{}u\right)\beta\right) \Big|z\Big|^n\right). \]

Then,

\[ F=aF_y\dfrac{u}{u_y}+\left(1-a\right)F_yz. \]

For state determination, \(z\) is solved iteratively by using the Newton method. The evolutions of internal functions rely on the dissipated energy \(e\), which is defined to be a normalized quantity.

\[ e=\left(1-a\right)\int{}z~\mathrm{d}u. \]

The trapezoidal rule is used so that

\[ \Delta{}e=\left(1-a\right)\dfrac{2z+\Delta{}z}{2}\Delta{}u. \]

The evolutions are

\[ \begin{align*} \nu&=\nu_0+\delta_\nu{}e,\\[3mm] \eta&=\eta_0+\delta_\eta{}e,\\[3mm] A&=1-\delta_Ae,\\[3mm] h&=1-\zeta_1\exp\left(-\left(\dfrac{z\cdot\text{sign}\left(\Delta{}u\right)-qz_u}{\zeta_2}\right)^2\right),\\[3mm] \zeta_1&=\zeta\left(1-\exp\left(-pe\right)\right),\\[3mm] \zeta_2&=\left(\phi_0+\delta_\phi{}e\right)\left(\lambda+\zeta_1\right),\\[3mm] z_u&=\sqrt[n]{\dfrac{1}{\nu}}=\nu^{-1/n}. \end{align*} \]

Parameters

Strength degradation is controlled by \(\nu\). To disable it, set \(\delta_\nu=0\).

Stiffness degradation is controlled by \(\eta\). To disable it, set \(\delta_\eta=0\).

Pinching is controlled by \(h\). To disable it, set \(\zeta=0\) or \(p=0\).

Examples

Vanilla Model

The default behavior is similar to a bilinear hardening material.

Text Only
material BWBN 1
materialtest1d 1 4E-4 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 80

vanilla model

Strength degradation

A positive \(\delta_\nu\) enables strength degradation.

Text Only
material BWBN 1 2E5 4E2 0 .5 1. 1. 1E0 1. 0. 1. 0. 0. 0. 0. 0. 1. 0.
materialtest1d 1 4E-4 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 80

strength degradation

A positive \(\delta_A\) has the similar effect.

Text Only
material BWBN 1 2E5 4E2 0 .5 1. 1. 0. 1. 0. 1. 0. 0. 1E0 0. 0. 1. 0.
materialtest1d 1 4E-4 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 80

strength degradation

Stiffness degradation

A positive \(\delta_\eta\) enables stiffness degradation.

Text Only
material BWBN 1 2E5 4E2 0 .5 1 1 0 1 1E1 1 0 1 0 1 1 0 0
materialtest1d 1 4E-4 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 80

stiffness degradation

Pinching Effect

The pinching effect is governed by \(\phi_0\), \(\delta_\phi\), \(\zeta\), \(p\), \(q\) and \(\lambda\).

Text Only
material BWBN 1 2E5 4E2 0 .5 1. 1. 0. 1. 0. 1. 1E1 1. 0. 1E1 1E0 1. 0.
materialtest1d 1 1E-3 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 80

pinching effect