RambergOsgood
Ramberg-Osgood Steel Model
Syntax
Text Only | |
---|---|
History Variable Layout
location | value |
---|---|
initialize_history(0) |
load_sign |
initialize_history(1) |
reverse_strain |
initialize_history(2) |
reverse_stress |
initialize_history(3) |
previous_reverse_strain |
initialize_history(4) |
previous_reverse_stress |
Remarks
- Local iterations are required to obtain the stress value.
Theory
The Ramberg-Osgood relationship is defined as
\[
\varepsilon=\dfrac{\sigma}{E}+\alpha\dfrac{\sigma}{E}(\dfrac{\sigma}{\sigma_0})^{n-1}
\]
where \(\alpha\) is the offset and \(n\) is the material constant controls hardening. Noting that \(\varepsilon=\varepsilon_e+\varepsilon_p=\dfrac{\sigma}{E}+\varepsilon_p\), hence
\[
\dfrac{\sigma}{E}+\varepsilon_p=\dfrac{\sigma}{E}+\alpha\dfrac{\sigma}{E}(\dfrac{\sigma}{\sigma_0})^{n-1}
\]
so
\[
\varepsilon_p=\alpha\dfrac{\sigma}{E}(\dfrac{\sigma}{\sigma_0})^{n-1}.
\]
At the yield stress, viz., \(\sigma=\sigma_0\), then
\[
\varepsilon_p=\alpha\varepsilon_e.
\]
So the offset \(\alpha\) indicates the magnitude of plastic strain at yield stress.
The cyclic response uses the difference between current reverse stress and previous reverse stress as "yield stress".
Examples
Text Only | |
---|---|
Text Only | |
---|---|