DuncanSelig
Plane Strain Duncan-Selig Soil Model
References
Syntax
Theory
The constitutive relationship can be expressed as
\[
\dot\sigma=\dfrac{3B}{9B-E}\begin{bmatrix}
3B+E&3B-E&0\\
3B-E&3B+E&0\\
0&0&E
\end{bmatrix}\dot\varepsilon.
\]
Note it is an incremental form of the constitutive relationship. Symbols \(B\) and \(E\) denote bulk and elastic modulus, respectively.
The elastic modulus \(E\) is a function of stress.
\[
E=E_i\left(1-\dfrac{\sigma_d}{\sigma_{d,max}}\right)^2,
\]
with
\[
E_i=E_r\left(\dfrac{\sigma_3}{p_a}\right)^n,\quad
\sigma_{d,max}=\dfrac{2}{r_f}\dfrac{c\cos\phi+\sigma_3\sin\phi}{1-\sin\phi}.
\]
The friction angle \(\phi\) decreases with increasing \(\sigma_3\).
\[
\phi=\phi_i-\Delta\psi\log_{10}\left(\dfrac{\sigma_3}{p_a}\right).
\]
The deviatoric stress \(\sigma_d\) is the difference between the major and minor principal stresses.
\[
\sigma_d=\sigma_1-\sigma_3.
\]
The bulk modulus \(B\) is a function of \(\sigma_3\).
\[
B=B_r\left(\dfrac{\sigma_3}{p_a}\right)^m.
\]