NLE3D01
Nonlinear Elastic 3D Model
Syntax
Text Only | |
---|---|
Theory
The strain energy potential is expressed as
\[
W=\dfrac{9}{2}K\varepsilon_v^2+\dfrac{\varepsilon_0\sigma_0}{1-m}\left(\dfrac{\varepsilon_p}{\varepsilon_0}\right)^{(
1-m)},
\]
where \(K\) is the bulk modulus, \(\varepsilon_0\) is the reference strain, \(\sigma_0\) is the reference stress and \(m\in[0,1]\) is an exponent controls nonlinearity. The volumetric strain \(\varepsilon_v\) and equivalent strain \(\varepsilon_p\) are expressed as
\[
\varepsilon_v=\text{trace}\left(\varepsilon\right),\qquad\varepsilon_p=\sqrt{\dfrac{2}{3}\varepsilon_d:
\varepsilon_d}.
\]